Review

Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease

Clara Hiu-Ling Hunga, Yuen-Shan Hoa, Raymond Chuen-Chung Changa,b,c,*

a Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
b Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
c State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China

Abstract

Perturbed neuronal calcium homeostasis is a prominent feature in Alzheimer's disease (AD). Mitochondria accumulate calcium ions (Ca2+) for cellular bioenergetic metabolism and suppression of mitochondrial motility within the cell. Excessive Ca2+ uptake into mitochondria often leads to mitochondrial membrane permeabilization and induction of apoptosis. Ca2+ is an interesting second messenger which can initiate both cellular life and death pathways in mitochondria. This review critically discusses the potential of manipulating mitochondrial Ca2+ concentrations as a novel therapeutic opportunity for treating AD. This review also highlights the neuroprotective role of a number of currently available agents that modulate different mitochondrial Ca2+ transport pathways. It is reasoned that these mitochondrial Ca2+ modulators are most effective in combination with agents that increase the Ca2+ buffering capacity of mitochondria. Modulation of mitochondrial Ca2+ handling is a potential pharmacological target for future development of AD treatments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As the average life span of human population gradually increases, the prevalence of age-related diseases has significantly increased. Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, affecting approximately 35.6 million people worldwide (Prince and Jackson, 2009). AD is the most common form of dementia. The disease is characterized by progressive synaptic dysfunction and neuronal loss in various brain regions, especially in the cortex and hippocampus. Severe neurodegeneration in these brain regions results in cognitive, emotional, social and motor impairments. With more than a 100 years of research, the underlying mechanism of this incurable disease still remains elusive. Perturbed neuronal calcium (Ca2+) homeostasis is a common feature in many neurodegenerative diseases including AD, amyotrophic lateral sclerosis (ALS), ischemic stroke and Parkinson’s disease (PD) (Mattson and Chan, 2003). Increasing lines of evidence support the idea that Ca2+ dysregulation plays a key role in AD pathogenesis (Bezprozvanny, 2009; Bojarski et al., 2008; LaFerla, 2002; Mattson and Chan, 2003; Yu et al., 2009).

2. Neuronal Ca2+ dysregulation and Alzheimer’s disease

Ca2+ signaling is essential for life and death processes including neuronal excitability, synaptic plasticity, gene transcription and apoptosis (Berridge, 1998; Berridge et al., 1998). The Ca2+ dysregulation hypothesis postulates that sustained increase in cytosolic Ca2+ concentrations can lead to neurodegeneration in AD (Khachaturian, 1994; Toescu and Verkhratsky, 2007). Disturbances in Ca2+ signaling have been found in both sporadic and familial cases of AD (LaFerla, 2002). Several age-related perturbations in pathways regulating Ca2+ homeostasis have been reported, suggesting a possible linkage between aging and the development of sporadic AD (Bezprozvanny, 2009). A small proportion of AD patients (~5%) suffer from an early-onset familial form that occurs under age of 65 (Hardy, 2006). The genes involved in familial AD include presenilins (presenilin 1 and 2) and amyloid precursor protein (APP) (Hardy and Gwinn-Hardy, 1998). Both have been shown to play important roles in Ca2+ signaling (LaFerla, 2002). The mechanisms of how Ca2+ homeostasis is disrupted in AD have been extensively reviewed (Bezprozvanny, 2009; Bojarski et al., 2008; LaFerla, 2002; Mattson and Chan, 2003; Yu et al., 2009). In the fol-
lowing sections, we will briefly discuss this issue for readers to understand how Ca^{2+} dyshomeostasis is linked with AD.

2.1. APP mutation induces Ca^{2+} influx and elevates cytosolic Ca^{2+} concentrations

Accumulation of senile plaques and neurofibrillary tangles are two important pathological hallmarks in AD brains. Senile plaques are made of beta-amyloid (Aβ) peptides which are derived from APP. Mutations associated with familial AD result in increased production of the amyloidogenic Aβ fragments (Mattson, 1997). APP derivatives such as secreted forms of APP (sAPP), Aβ-containing fragments, and APP intracellular domain (AICD) have been shown to modulate cellular Ca^{2+} signaling (Leissring et al., 2002; Mattson et al., 1993, 1992). Aβ aggregates have been found to form cation-selective ion channels in the plasma membrane, resulting in increased cytosolic Ca^{2+} concentrations (Arispe et al., 1993a,b; Kagan et al., 2002). Nevertheless, how Aβ-induced membrane pores are related to human AD is still unclear. Oxidative damage is another mechanism by which Aβ causes disruption in Ca^{2+} homeostasis and neurotoxicity (Hensley et al., 1994; LaFerla, 2002). Accumulation of Aβ leads to formation of reactive oxygen species (ROS), which promotes DNA damage, lipid peroxidation, protein carbonylation and nitrosylation. Lipid peroxidation modifies functions of membrane transporters and ion channels (Mark et al., 1995), which in turn further elevates basal cytosolic Ca^{2+} concentrations, forming a vicious cycle (LaFerla, 2002; Mattson and Chan, 2003).

2.2. Presenilins modulate ER Ca^{2+} signaling and enhance ER Ca^{2+} release

Presenilins (PS1 and PS2) are components of the γ-secretase complex which are involved in the proteolytic cleavage of APP. PS1 and PS2 are located in various intracellular compartments such as the endoplasmic reticulum (ER) (Annaert et al., 1999), Golgi apparatus (Annaert et al., 1999), and mitochondria (Ankarcrona and Hultenby, 2002). Notably, presenilins are highly enriched in a specific region where the ER membranes are in close contact with mitochondria namely the ER-mitochondrial-associated membranes (MAM) (Area-Gomez et al., 2009).

FAD-linked presenilin mutations are believed to alter the activity of γ-secretase such that more Aβ are produced, especially the fibrillogenic Aβ_{1-42} peptides (Xia et al., 1997). FAD-related mutant presenilins can also affect ER Ca^{2+} handling independent of Aβ by exaggerating Ca^{2+} release from the ER in response to agonist stimulation. FAD mutant PS1 and PS2 have been shown to interact with the inositol 1,4,5-triphosphate receptor (InsP_{3}R) Ca^{2+}-releasing channels and enhance their gating activity by a gain-of-function effect (Cheung et al., 2010, 2008). InsP_{3}Rs are more likely to be in a high-probability burst mode, resulting in enhanced ER Ca^{2+} release (Cheung et al., 2010). However the molecular mechanism of this modulation remains elusive.

Depletion of ER Ca^{2+} store triggers Ca^{2+} influx from extracellular space via store-operated Ca^{2+} channels (Putney, 1986). This is known as capacitative Ca^{2+} entry (CCE or store-operated Ca^{2+} entry). Stromal interacting molecule 1 (STIM1) protein acts as Ca^{2+}-sensors on the ER which interacts with Orai1/TRPC channels in the plasma membrane and activates store-operated channels for Ca^{2+} entry (Ong et al., 2007; Zhang et al., 2005). CCE has been shown to be attenuated by presenilin mutants, possibly due to increased Ca^{2+} in the ER store (Herms et al., 2003; Leissring et al., 2000; You et al., 2000). Moreover, increased levels of STIM1 have been found in mouse embryonic fibroblasts lacking presenilins, implicating that expression of STIM1 may be presenilin-dependent (Bojarski et al., 2009).

2.3. Ca^{2+}-dependent tau phosphorylation and dephosphorylation

Neurofibrillary tangles formed by hyperphosphorylation of the microtubule-associated protein tau are another hallmark in AD. The phosphorylation state of tau is highly Ca^{2+}-dependent. Tau phosphorylation is regulated by Ca^{2+}-dependent calmodulin-dependent protein kinase II (CaMKII) and calpain (Littersky et al., 1996; Maccioni et al., 2001). Activation of cyclin-dependent protein kinase 5 (Cdks) by calpain via p25 has been suggested to play a role in tau hyperphosphorylation (Maccioni et al., 2001). On the other hand, calcineurin, a Ca^{2+}/calmodulin-dependent protein phosphatase is involved in tau dephosphorylation (Fleming and Johnson, 1995). Tau dephosphorylation was completely attenuated in rat cerebral-cortical slice pre-treated with the calcineurin inhibitor Cyclosporin A (Fleming and Johnson, 1995). Injection of FK506 (a calcineurin inhibitor) has been reported to enhance tau phosphorylation at various phosphorylation sites in mouse brain (Luo et al., 2008). On the other hand, calcineurin inhibitors have also been shown to increase phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) at serine-9 (Kim et al., 2009). Phosphorylation of GSK-3β at serine-9 inhibits tau phosphorylation by GSK-3β (Hughes et al., 1993). Hence, both increase and decrease cytosolic Ca^{2+} concentrations contribute to tau phosphorylation, therefore perturbed Ca^{2+} homeostasis may associate with the tau pathology in AD.

2.4. Sporadic AD: ApoE4 and CALHM1

Apolipoprotein E is involved in transporting cholesterol from the blood to the cells. Individuals with the allele for the E4 isoform of apolipoprotein E (ApoE4) have an increased risk of sporadic AD (Mahley et al., 2006). ApoE 4 was found to disrupt Ca^{2+} homeostasis by triggering extracellular Ca^{2+} influx and amplifying neuronal Ca^{2+} responses (Hartmann et al., 1994; Tolar et al., 1999). Recent research has identified polymorphism of a gene called calcium homeostasis modulator 1 (CALHM1) that may link with sporadic AD. CALHM1 encodes for a protein which forms a Ca^{2+} channel on the plasma membrane and controls Aβ levels (Dreesen-Werringloer et al., 2008). Since then several studies have shown that the P86L polymorphism of CALHM1 is associated with AD (Boada et al., 2010; Cui et al., 2010), whilst other studies failed to find a link between CALHM1 and risk of AD (Bertram et al., 2008; Minster et al., 2009; Nacmias et al., 2010; Sleegers et al., 2009). The relevance of CALHM1 in AD remains unclear.

2.5. Current “Ca^{2+}-targeted” drugs

As illustrated above, it is clear that Ca^{2+} signaling pathways are highly involved in AD pathogenesis. Several FAD-approved drugs and drugs tested in clinical trials therefore aim to target different Ca^{2+} signaling pathways in order to re-establish the cytosolic Ca^{2+} homeostasis. Memantine (Namenda) is the most common drug for moderate to severe AD. Memantine is a non-competitive N-methyl D-aspartate (NMDA) antagonist. It inhibits Ca^{2+} entry into neurons through the NMDA receptors and therefore reduces excitotoxicity (Bezprozvanny, 2009). However, currently it only provides limited benefits for AD patients. Hu et al. (2009) found that specific antagonists targeting at NMDA receptors containing the GluN2B subunit e.g. ifenprodil and Ro 25–6981, might be effective in protecting neurons from Aβ-induced inhibition of synaptic plasticity in vivo. EVT-101 (Evotec AG, Hamburg, Germany; http://www.evotec.com/) is a newly developed NMDA receptor subunit 2B specific antagonist. Phase I trial of EVT-101 is completed and cognitive performance of patients was improved (NCT00526968). This specific NMDA receptor antagonist is believed to greatly reduce the chance of
Fig. 1. Life and death pathways of mitochondrial Ca2+ accumulation. Left: Under normal conditions, Ca2+ influx from extracellular matrix or Ca2+ release from the ER causes increase in cytosolic Ca2+ concentration ([Ca\textsubscript{2+}]\text{\textsubscript{i}}). Mitochondria rapidly take up cytosolic Ca2+, which is crucial for life processes such as mitochondrial movement, Ca2+ homeostasis and bioenergetic metabolism. Right: When mitochondria are overloaded with Ca2+, mitochondrial permeability transition pores will be triggered to open. Several pro-apoptotic factors will be released to the cytosol, thereby inducing apoptosis.

side effects caused by the unspecific NMDAR antagonist memantine.

Nimodipine is an isopropyl Ca2+ channel blocker which has been shown to improve cognitive performance of dementia patients including AD (Lopez-Arrieta and Birks, 2002). MEM-1003 (Memory Pharmaceuticals, Montvale, New Jersey, USA; http://www.Memorypharma.com/) is a nimodipine-related neuronal L-type Ca2+ channel antagonist. Phase IIa clinical trial has recently been completed (NCT00257673), but failed to show significant improvements in patients (Hareyan, 2007). Evidence from NMDA receptor antagonists and Ca2+ channel blockers indicates that decreased Ca2+ flux into neurons may benefit AD patients.

Indeed, classic therapies which aim to compensate the level of acetylcholine in AD patients also cause alteration in Ca2+ homeostasis. FAD-approved acetylcholinesterase (AChE) inhibitors e.g. Donepezil, Galatamine, and Rivastigmine inhibit degradation of acetylcholine and therefore increase acetylcholine concentrations in the brain which is believed to associate with improvement in cognitive functions. In fact, the AChE inhibitors will cause an increase opening of acetylcholine receptors, which are receptor-activated Ca2+ channels themselves. The two major classes of FAD-approved AD drugs (NMDA receptor antagonists and AChE inhibitors) apparently will have opposite effects on cytosolic Ca2+ concentration, implying that there is evidence for both increased and decreased cytosolic Ca2+ in AD.

Dimebon (Latrepirdine) (Medivation Inc., San Francisco, CA) is an antihistamine drug used in Russia (Bachurin et al., 2001). Recent studies have discovered the novel role of Dimebon as a neuroprotective agent as well as a cognition-enhancing agent (Bachurin et al., 2001). As an antagonist of NMDAR and Ca2+ channels, Dimebon protects neurons by preventing NMDA and Ca2+-induced neurotoxicity (Bachurin et al., 2001). On the other hand, it also increases the level of acetylcholine by inhibiting the AChE (Bachurin et al., 2001). Phase II clinical trial reported that Dimebon is well tolerated and exhibit significant improvements in patients with mild to moderate AD (Doody et al., 2008). However, a recent Phase III clinical trial failed to show the same promising results (Neale, 2010). Additional Phase III clinical trials of Dimebon are still on-going at the moment; therefore the effectiveness of Dimebon in AD remains debatable.

Most of the current AD treatments such as AChE inhibitors can provide a one-time elevation of cognitive performance. However, the decline of cognitive ability from this elevated level will occur with the same speed as in non-treated patients. This urges researchers to seek for disease-modifying drugs.

3. Mitochondrial Ca2+ governs neuronal life and death pathways

Mitochondria are important in maintaining neuronal Ca2+ homeostasis. Normal mitochondrial functions are extremely important for neurons, as neuronal activities such as synaptic transmission and axonal transport require high level of energy. In particular, mitochondrial Ca2+ levels are crucial for maintaining cellular functions including bioenergetic metabolism. On the other hand, excessive Ca2+ uptake into mitochondria results in rupture of the outer mitochondria membrane, which may then lead to initiation of apoptosis. However, this phenomenon is likely to occur only \textit{in vitro}. The regulatory systems maintaining the mitochondrial Ca2+ homeostasis thus provide an attractive therapeutic target in treating AD. In the following sections we will explain how mitochondrial Ca2+ is involved in life and death pathways in the cell (Fig. 1), and how mitochondrial Ca2+ is linked to AD.

3.1. The cell life pathway: physiological roles of mitochondrial Ca2+ uptake

Ca2+ uptake into mitochondria plays a key role in cellular ATP production and mitochondrial motility. Bioenergetic metabolism in mitochondria highly relies upon Ca2+. In the mitochondrial matrix, activity of the metabolic enzymes involved in the Krebs
cycle (pyruvate, α-ketoglutarate, and isocitrate dehydrogenases) is all Ca2+-dependent (Rizzuto et al., 2000). Ca2+ directly regulates α-ketoglutarate and isocitrate dehydrogenases, whilst pyruvate dehydrogenases are activated by Ca2+-dependent phosphatases (Rizzuto et al., 2000). Ca2+ concentration in mitochondria therefore determines the rate of ATP synthesis for the cell.

Mitochondria are mobile organelles which travel along the axons to regions of increased energy need in the cell, such as synapses (Chang et al., 2006; Hollenbeck and Saxton, 2005). Microtubules-dependent mitochondrial motility is regulated by the kinesin1/Miro/Milton complex (Glater et al., 2006; Guo et al., 2005; Stowers et al., 2002). Miro (mitochondrial Rho GTPase) is a mitochondrial outer membrane protein. The activity of Miro is Ca2+-dependent due to the presence of a pair of Ca2+-binding EF hand motifs (Frederick et al., 2004). Milton is a cytoplasmic protein which binds with Miro to form a protein complex that links kinesin-1 to mitochondria for anterograde transport (Glater et al., 2006; Guo et al., 2005; Stowers et al., 2002). The Ca2+-binding EF-hand domain of Miro is essential for Ca2+-dependent mitochondrial movement. Elevated Ca2+ causes kinesin heavy chain to dissociate with microtubules, suppressing mitochondrial motility (Wang and Schwarz, 2009). Ca2+-dependent mitochondrial motility is crucial for distribution of mitochondria in neurons. It recruits mitochondria to cellular regions with the need of ATP supply and Ca2+ buffering e.g. activated synapses (Macaskill et al., 2009).

In addition, Miro is essential for regulation of mitochondrial morphology. At resting low cytosolic Ca2+ levels, Miro facilitates the formation of elongated mitochondria by inhibiting dynamin-related protein 1 (Drp-1 or dynamin-like protein 1, DLP-1)-mediated fission (Saotome et al., 2008). On the other hand, high cytosolic Ca2+ triggers fragmentation and shortening of mitochondria (Saotome et al., 2008). Miro-mediated redistribution of mitochondria has also been shown to increase their ability to accumulate Ca2+ (Saotome et al., 2008). Evidence from the above studies demonstrates that Miro acts as a cytosolic Ca2+-dependent regulator of mitochondrial dynamics. Meanwhile, calcineurin, a Ca2+-dependent phosphatases, has been shown to regulate the translocation of cytosolic Drp-1 via dephosphorylation during fission (Cereghetti et al., 2008).

Clearly, Ca2+ regulates motility, distribution, morphology and functions of mitochondria in physiological conditions. It is therefore crucial to maintain mitochondrial Ca2+ homeostasis for normal cellular functioning. If this homeostasis is disrupted, a death signal can be resulted.

3.2. The cell death pathway: mitochondrial Ca2+ overload triggers intrinsic apoptosis

The physiological Ca2+ signal can switch to a death signal when the Ca2+ level is beyond the threshold. Hence, excessive Ca2+ uptake into mitochondria can be lethal to neurons. The intrinsic (mitochondrial) pathway of apoptosis is triggered by intracellular stress, such as Ca2+ overload and oxidative stress (Galluzzi et al., 2009). Mitochondria integrate pro- and anti-apoptotic signals and determine the fate of the cell. If death signals predominate, mitochondrial-membrane-permeabilization (MMP) occurs, and large conductance permeability-transition-pores (PTP) opens (Galluzzi et al., 2009). PTP opening allows uncontrolled entry of solutes and water into the mitochondrial matrix by osmotic forces (Galluzzi et al., 2009). This causes mitochondria to swell and leads to rupture of the outer mitochondrial membrane, releasing proteins from the intramembrane space e.g. cytochrome c into the cytosol (Galluzzi et al., 2009). MMP results in mitochondrial depolarization, uncoupling of oxidative phosphorylation, overproduction of ROS and release of pro-apoptotic proteins to the cytosol, eventually leading to cell death. When MMP is permanent and numerous mitochondria are continuously affected, neurons can no longer cope with the stress and apoptosis is initiated (Galluzzi et al., 2009). Physiological mitochondrial Ca2+ concentrations do not induce PTP opening, but will work in synergy with pro-apoptotic stimuli (Rizzuto et al., 2009). The “double hit” hypothesis proposes that apoptotic stimuli have dual targets (Pinton et al., 2008). On one hand, it causes Ca2+ release from the ER and subsequent Ca2+ uptake by mitochondria. On the other hand, it makes mitochondria more sensitive to potential Ca2+ damaging effects (Pinton et al., 2008).

The above pathways are summarized in Fig. 1. Given the dual roles of mitochondria Ca2+ in neurons, we will critically discuss the possibility of modulating Ca2+ in mitochondria as a potential pharmacological target for AD in this review.

4. Mitochondrial Ca2+ handling and AD

Mitochondrial dysfunction is a prominent feature in AD. Aβ has been found in mitochondria of AD brain and transgenic mouse model of AD overexpressing Aβ. Aβ peptides accumulate in mitochondria and are associated with oxidative stress, disrupted Ca2+ homeostasis, impaired energy metabolism and induction of apoptosis (Mattson et al., 2008). Mitochondria from aged cerebellar granular neurons are depolarized and less efficient in handling Ca2+ load (Toescu and Verkhovsky, 2007). Cortical mitochondria from 12-month-old mice also show a reduced capacity for Ca2+ uptake when challenged with CaCl2 pulses, compared to that of 6-month-old mice (Du et al., 2008). Mitochondria isolated from fibroblasts of AD patients exhibit reduced Ca2+ uptake compared to age-matched control, suggesting that Ca2+ buffering ability may be impaired in the mitochondria of AD fibroblasts (Kumar et al., 1994). Following oxidative stress, the increase in Ca2+ uptake in mitochondria of AD fibroblasts is much greater than that in control, implicating that mitochondria from AD fibroblasts have a higher sensitivity towards oxidative stress (Kumar et al., 1994). Mitochondria with over-expression of human APP also show a lower Ca2+ capacity compared to non-transgenic mitochondria (Du et al., 2008). Aβ1–42 oligomer induces Ca2+ overload in mitochondria in both cortical and cerebellar granular neurons (Sanz-Blasco et al., 2008). The increase is limited to a pool of mitochondria close to the sites of Ca2+ entry and release (Sanz-Blasco et al., 2008). Ca2+ overload in mitochondria causes increased ROS production and impairment of bioenergetic metabolism which eventually leads to cell death. Mutations in presenilins may promote mitochondrial dysfunction by perturbing ER Ca2+ handling, which promotes synaptic mitochondrial Ca2+ overload and in turn triggers apoptosis. A recent study has also shown that mutated CALHM1 may cause slower kinetics of mitochondrial Ca2+ uptake and release, increasing the risk of mitochondrial Ca2+ overload (Moreno-Ortega et al., 2010).

The importance of mitochondrial Ca2+ in apoptosis has been emphasized in neuronal death in AD. However, mitochondrial Ca2+ is also important in earlier stages of the disease. The rupture of mitochondrial membrane caused by Ca2+ overload reduces the number of “healthy” mitochondria, and this will affect crucial neuronal functions including synaptic transmission and axonal transport. This could perhaps account for some of the early symptoms of the disease e.g. memory impairment. In this notion, the maintenance of mitochondrial Ca2+ homeostasis is important for both early and later stages of the disease. In the following paragraphs, we will illustrate different influx and efflux pathways regulating the mitochondrial Ca2+ homeostasis, and how different agents targeting these pathways can provide neuroprotection in AD.

5. Mitochondria in neuronal Ca2+ signaling

Ca2+ signaling causes transient changes in cytosolic Ca2+ concentration. Mitochondria rapidly take up Ca2+ when a physiological
stimulus elicits an increase in cytosolic Ca2+ concentrations. This uptake machinery allows mitochondria to act as “Ca2+ buffers” to maintain the normal homeostasis. At the same time, it also provides Ca2+ for various mitochondrial functions. Mitochondrial Ca2+ signaling therefore plays an important role in determining the fate of neurons. Mitochondria possess various Ca2+ influx and efflux pathways (Fig. 2), which provide attractive targets for manipulation of Ca2+ concentrations within the organelle (Table 1).

5.1. Pathways for Ca2+ uptake

5.1.1. Voltage-gated anion channel regulates Ca2+ uptake in the outer mitochondrial membrane

The outer mitochondrial membrane (OMM) is relatively permeable to Ca2+ due to the high conductance voltage dependent anion channel (VDAC) located in this membrane. Over-expression of VDAC has been shown to promote Ca2+ uptake into mitochondria (Rapizzi et al., 2002). Closure of VDAC enhances Ca2+ influx into mitochondria, thereby promoting mitochondrial permeability transition and subsequent cell death (Rizzuto et al., 2009; Rostovtseva et al., 2005; Tan and Colombini, 2007).

5.1.2. Mitochondrial membrane potential regulates Ca2+ entry via the unipor in the inner mitochondrial membrane

In the inner mitochondrial membrane (IMM), the mitochondrial Ca2+ uniporter regulates Ca2+ entry into mitochondria. The uniporter is a highly selective divalent cation channel (Kirichok et al., 2004). The electron transport chain (ETC) in the IMM consists of five protein complexes for the production of ATP. The ETC maintains an electrochemical gradient of $\Delta \Psi_m$ across the IMM, and is known as the mitochondrial membrane potential ($\Delta \Psi_m$). $\Delta \Psi_m$ provides a driving force for Ca2+ to enter the mitochondria via the uniporter. Given that mitochondrial Ca2+ overload can lead to cell death, depolarization of $\Delta \Psi_m$ (hence reduced driving force for Ca2+ entry) can be a drug target for stopping excessive Ca2+ from entering mitochondria.

5.2. Pathways for calcium efflux

5.2.1. Antiporers and permeability transition pores for mitochondrial calcium sequestration

Besides various Ca2+ uptake systems mentioned, there are also a few pathways for Ca2+ efflux. The Na+/Ca2+ and H+/Ca2+ antiporers are two main routes for Ca2+ release from mitochondria. Generally, 3Na+ and 3H+ enter mitochondria via the respective antiporers when a Ca2+ is extruded (Fig. 2). Hence, concentrations of Na+ and H+ can affect Ca2+ concentration in the mitochondria. These efflux pathways can become saturated when there is high Ca2+ concentration in the matrix, which can lead to mitochondrial Ca2+ overload (Rizzuto et al., 2009). As mentioned earlier, mitochondrial Ca2+ overload triggers opening of PTP which locates across the IMM and OMM. The molecular identity of PTP is still uncertain, but it is suggested to be a multimeric complex composed of the VDAC, an integral protein called adenine nucleotide translocase (ANT) on the IMM, and a matrix protein called cyclophilin D (CypD). However, mitochondria lacking VDAC (Szalai et al., 2000) and ANT (Kokoszka et al., 2004) have been shown to undergo Ca2+-induced PTP opening, implying that the two components may not be prerequisite for MPT (Rizzuto et al., 2009). PTP is a non-selective channel of which operation is dependent on the mitochondrial matrix Ca2+. High Ca2+ levels in the mitochondrial matrix activate translocation of CypD to the IMM. CypD binds to ANT and inhibits ATP/ADP binding, thereby inducing opening of PTP (Rizzuto et al., 2009).

5.3. ER/mitochondria calcium crosstalk is important for efficient mitochondrial calcium signaling

Mitochondria rapidly take up Ca2+ released from the ER. The proximate juxtaposition between these two organelles ensures efficient Ca2+ transfer (Rizzuto et al., 1993, 1998). In fact, the contact between the ER and mitochondria is estimated to be 5–20% of the total mitochondrial surface (Rizzuto et al., 1998). MAM is a region between the ER and mitochondria enriched with enzymes and proteins involved in lipid biosynthesis and Ca2+ signaling between the organelles (Vance, 1990). Indeed, VDAC on the OMM is located in the interface between the ER and mitochon-

<table>
<thead>
<tr>
<th>Agent/Drug</th>
<th>Site of action</th>
<th>Effect</th>
<th>Model</th>
<th>Neurotoxicity model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCCP</td>
<td>$\Delta \Psi$</td>
<td>Depolarization</td>
<td>Reduce Ca2+ uptake</td>
<td>Rat cerebellar granule neurons</td>
<td>$\Delta \Psi_m$ oligomer</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>$\Delta \Psi$</td>
<td>Depolarization</td>
<td>Reduce Ca2+ uptake</td>
<td>Rat cortical neurons</td>
<td>$\Delta \Psi_m$ oligomer</td>
</tr>
<tr>
<td>Minocycline</td>
<td>VDAC $\Delta \Psi$</td>
<td>Depolarization</td>
<td>Reduce Ca2+ uptake</td>
<td>Rat cerebellar granule neurons</td>
<td>NMMA</td>
</tr>
<tr>
<td>KB-R7943</td>
<td>Na+/Ca2+ exchanger</td>
<td>Reduce Ca2+ uptake</td>
<td>KB-R7943</td>
<td>Glutamate</td>
<td>Storochevykh et al. (2009)</td>
</tr>
<tr>
<td>TAB</td>
<td>Unknown</td>
<td>Reduce Ca2+ uptake</td>
<td>Rat cortical neurons</td>
<td>A\textsubscript{JL}(-1), A\textsubscript{JL}(+1)</td>
<td>Chi et al. (2008)</td>
</tr>
<tr>
<td>Dimebon</td>
<td>mPTP</td>
<td>Inhibit mPTP opening</td>
<td>KB-R7943</td>
<td>A\textsubscript{JL}, A\textsubscript{JL}(+1)</td>
<td>Bachurin et al. (2003)</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>Cyclophilin D</td>
<td>Increase Ca2+ buffering capacity</td>
<td>Mouse cortical mitochondria</td>
<td>mAPP Trangenic mice</td>
<td>Du et al. (2008)</td>
</tr>
</tbody>
</table>

Fig. 2. Mitochondrial Ca2+ signaling pathways. $\Delta \Psi_m$ (mitochondrial membrane potential); $[\text{Ca}^{2+}]_{\text{m}}$ (mitochondrial Ca2+ concentration); $[\text{Ca}^{2+}]_{\text{i}}$ (cytosolic Ca2+ concentration); H+ (hydrogen ions); PTP (mitochondrial permeability transition pore); Na+ (sodium ions); VDAC (voltage-dependent anion channel); CypD (cyclophilin D); ANT (adenine nucleotide translocase).
An early report showing that patients suffering from rheumatoid arthritis has a low risk of developing AD leads to a hypothesis that there is chronic neuroinflammation in AD brains and anti-inflammatory agents maybe neuroprotective (McGeer et al., 1990). Non-steroidal anti-inflammatory drugs (NSAIDs) such as indomethacin have been shown to reduce the degree of cognitive decline in AD patients (Rogers et al., 1993). The effectiveness of NSAIDs in AD has been challenged by negative results from clinical trials (McGeer et al., 2006). Nevertheless, a recent study has shown a novel neuroprotective mechanism by NSAIDs. Salicylate, R-flurbiprofen and indomethacin induce depolarization of the mitochondrial membrane, which then reduces Ca2+ entry into mitochondria (Sanz-Blasco et al., 2008). However, a direct action of NSAIDs on mitochondrial membrane potential has not been well established. In addition, a recent Phase III clinical trial with R-flurbiprofen showed negative results to treat AD patients. The failure from using NSAIDs as an AD treatment suggest that a more specific but mild potent compound which modulates uncoupling proteins may be the future therapeutic target.

KB-R7943 is a selective inhibitor of the Na+/Ca2+ exchanger. It causes depolarization of isolated brain mitochondria and reduces mitochondrial Ca2+ uptake (Storozhevych et al., 2009). Furthermore, KB-R7943 has been shown to inhibit mitochondrial Ca2+ uptake in permeablized Hela cells (Santo-Domingo et al., 2007). However, the mechanism of how KB-R7943 induces depolarization is not clear (Storozhevych et al., 2009). Similarly, minocycline has also been shown to induce depolarization of the mitochondrial membrane which reduces NMDA-induced Ca2+ overload in the mitochondria (Garcia-Martinez et al., 2010).

Taken together, depolarization of the mitochondrial membrane can be a possible way to inhibit Ca2+ entry into mitochondria. By reducing Ca2+ entry, the risk of mitochondrial Ca2+ overload can be lowered. However, the underlying mechanism of the depolarizing effect by the above drugs is still awaited to be elucidated. A possible target would be the components of the ETC which regulate \Delta \Psi_m. Further studies on how the membrane is depolarized by the drugs are required.

6.3. Modulation of uniporter calcium uptake efficiency attenuates excessive calcium entry

\[\Delta \Psi_m \text{ establishes a driving force for Ca}^{2+} \text{ entering mitochondria via the uniporter on the IMM. The activity of uniporter is regulated by extra-mitochondrial Ca}^{2+} \text{ (Kroner, 1986), and increase in cytosolic Ca}^{2+} \text{ can both activate and inactivate mitochondrial Ca}^{2+} \text{ uptake (Rizzuto et al., 2009). The uniporter is readily inhibited by Ruthenium Red and is also regulated by adenosine nucleotides (Bernardi, 1999; Litsky and Pfeiffer, 1997) and plant flavonoids (Montero et al., 2004). Protein kinases are also important regulators of the uniporter. Treatment with SB202190, a specific inhibitor of } \alpha \text{ and } \beta \text{ isoforms of p38 mitogen-activated protein (MAP) kinase has been shown to increase the rate of Ca}^{2+} \text{ uptake by mitochondria (Montero et al., 2002). The results suggest that p38 MAP kinase may inhibit the opening of uniporter. Protein kinase C has dual effects on Ca}^{2+} \text{ uptake by the uniporter: while the } \alpha \text{ isoform activates the uniporter, the } \beta \text{ and } \delta \text{ isoforms inactivate it. Taken the above reports together, uniporter on mitochondria can be modulated by numerous pharmacological interventions. Careful consideration has to be taken regarding the specificity of these interventions.} \]

6.4. Inhibition of permeability transition pore opening to inhibit induction of apoptosis

Dimebon has been shown to inhibit the opening of PTP induced by } A\beta_{25-35} \text{ (Bachurin et al., 2003). However, the mechanism of Dimebon is not specific to mitochondria (Bachurin et al., 2001). In
addition, it is not known whether inhibition of PTP opening would have any effect on mitochondrial Ca2+ homeostasis.

The abundance of CypD is associated with the vulnerability of the mitochondrial PTP to Ca2+ (Du et al., 2008). The immuno-suppressant Cyclosporine A (CsA) binds to CypD and inhibit its translocation to the IMM and subsequent induction of PTP opening (Rizzuto et al., 2009). Pre-treatment of CysA has been shown to increase mitochondrial Ca2+ buffering capacity in wild type and mutant amyloid precursor protein (mAPP) transgene mice (Du et al., 2008). Moreover, mitochondria isolated from CypD deficient mAPP mice have a higher Ca2+ uptake capacity than that of mAPP mice (Du et al., 2008). CypD deficient mitochondria are resistant to both A\textsubscript{β} and Ca2+-induced mitochondrial swelling and PTP opening (Du et al., 2008). This result shows that the absence of CypD protects neurons from A\textsubscript{β}-induced cell death. Blockade of CypD also improves learning and memory in AD mice (Du et al., 2008), implying that inhibition of CypD can be a potential therapeutic target for treatment of AD.

6.6. Enhancement of mitochondria activity as a drug target for AD

Mitochondrial defects are implicated in many neurodegenerative diseases including PD and AD. New therapeutic approaches have now begun to target mitochondria as a potential drug target (Chaturvedi and Beal, 2008). So far, we have mentioned different ways to reduce Ca2+ uptake in order to prevent excessive Ca2+ from entering mitochondria. As mitochondria act as Ca2+ buffers in the cell, a second approach to prevent Ca2+ overload is to increase the buffering capacity of mitochondria.

Agents such as Creatine protect neurons from glutamate- and A\textsubscript{β}-induced toxicity by providing energy reserves (Brewer and Wallimann, 2000). In PD animal models, antioxidants such as mitoQ (mitoquinone) and Coenzyme Q10 (CoQ10) selectively prevent mitochondrial oxidative damage (Chaturvedi and Beal, 2008). CoQ10 has also been shown to exhibit anti-amyloidogenic effects (Chaturvedi and Beal, 2008). These antioxidant agents may enhance the efficiency of ETC, hence results in better maintenance of mitochondrial membrane potential and therefore ATP production. Mitochondrial Ca2+ overload is not just dependent on mitochondrial Ca2+ concentration but may also depends on mitochondrial membrane potential and therefore ATP production. Mitochondrial Ca2+ overload is altered in AD and may even contribute to the cognitive deficits in AD. This leads to the hypothesis that modulating the level of mitochondrial Ca2+ by various pathways can be beneficial for patients suffering from AD. Mitochondrial Ca2+ handling provides an exciting and interesting drug target. Of all the drugs we have discussed so far, up-to-date, FCCP and Cyclosporine A are the drugs which have a specific and clearly identified action on mitochondria.

Nonetheless, at the moment it is not clear whether altering mitochondrial Ca2+ homeostasis represents a viable therapeutic strategy for AD. The biggest challenge now is to understand more about mitochondrial Ca2+ homeostasis at a molecular level, especially the molecular identity of the Ca2+ uniporter, Na+/Ca2+ and H+/Ca2+ exchangers. Moreover, the molecular composition of PTP is unclear. Additional Ca2+ uptake mechanisms such as the rapid mode of Ca2+ uptake and mitochondrial ryanodine receptors have been demonstrated in mitochondria from other tissues in the body e.g. the heart. Nevertheless, the role of these Ca2+ uptake modes in neuronal mitochondria is yet to be explored. Regarding the role of Ca2+ in mitochondria, there is so much to be explored: e.g. how Ca2+ can be switched from physiological to pathological and how mitochondrial Ca2+ signaling is affected when the tethering between ER and mitochondria is disrupted? With more research in these areas, it is more likely for us to design viable drugs targeting the mitochondrial Ca2+ pathways. Designing drugs that can specifically target mitochondrial Ca2+ homeostasis in neurons is challenging. It is important that the drug can be specifically delivered to neurons; otherwise it is likely to alter mitochondrial Ca2+ homeostasis in other tissues as well, including heart, muscle and liver. This will result in severe side effects.

In addition to the points above, there are some important questions we have to critically consider when designing drugs that alter mitochondrial Ca2+:

7.1. Decrease or increase mitochondrial Ca2+ uptake?

A number of studies mentioned have shown that by reducing Ca2+ influx into mitochondria, the risk of Ca2+ overload is lowered and induction of apoptosis can be attenuated (Garcia-Martinez et al., 2010; Sanz-Blasco et al., 2008). However, other studies have shown that by increasing the Ca2+ buffering capacity of mitochondria...
dria, more Ca²⁺ can be sequestered from the cytoplasm, and thus neurons can be protected (Du et al., 2008; El Idrissi, 2008). It is still unclear whether increasing or reducing mitochondrial Ca²⁺ uptake is a better approach for neuroprotection. Both approaches have their own reasons, but there are a few points we have to carefully consider. If the modulations allow less Ca²⁺ entering the mitochondria, it is important to make sure that the reduced Ca²⁺ uptake will not affect Ca²⁺-dependent physiological functions such as ATP production. At the same time, an important question is how the excessive cytosolic Ca²⁺ will be extruded if there is less Ca²⁺ uptake by mitochondria. In this case, additional Ca²⁺ buffering system in the cytoplasm would be needed. For the latter approach, it is crucial to ensure that the increased mitochondrial Ca²⁺ uptake will not exceed the threshold which triggers cell death pathways. In this case, neuroprotective agents that can increase or retain the activity of mitochondria will be useful to ensure normal mitochondrial function. The excessive Ca²⁺ taken by mitochondria can then be used for metabolic activities of mitochondria.

In either case, we have to make sure that the normal Ca²⁺-dependent mitochondrial functions such as ATP production and mitochondrial dynamics will not be affected while we are manipulating mitochondrial Ca²⁺ concentrations.

7.2. Heterogeneity of mitochondrial response
The microdomain hypothesis suggests that those mitochondria close to Ca²⁺ channels and ER stores are vulnerable to take up Ca²⁺ (Csordas et al., 2006; Rizzuto and Pozzan, 2006). It is interesting to study if the distance between the ER and mitochondria determines the vulnerability of mitochondria to Ca²⁺ overload? Moreover, how does the Ca²⁺ overload in one mitochondrion spread to other mitochondria? When considerable amount of mitochondria undergo membrane permeabilization, irreversible cell death mechanism is initiated. In this notion, would it be possible to attenuate Ca²⁺ overload among mitochondria to avoid cell death? Mitochondria have a quality control mechanism called mitophagy in which damaged mitochondria are selectively eliminated by autophagy (Lemasters, 2005). Recent work has demonstrated that NIX, ULK1 and Parkin are involved in regulation of mitophagy in mammalian cells (Tolkovsky, 2009). However the exact molecular mechanism and how mitophagy is initiated remains unclear. It is important to understand whether mitophagy can serve as a protective mechanism prior initiation of apoptosis.

8. Conclusions
At this point, there is still no single drug that can provide a cure for AD. Although there is evidence supporting the role of modulating mitochondria Ca²⁺ in neuroprotection, whether this approach can be an effective treatment for AD remains obscure. A combination with other drugs which aim to increase the ability of neurons for synaptic transmission and modulate the cytosolic calcium homeostasis may be beneficial in treating AD. For future development of drugs targeting mitochondrial Ca²⁺-mediated autophagy, agents that can enhance the activity of mitochondria should also be applied to increase the ability of mitochondria to buffer the excessive Ca²⁺.

Acknowledgements

The work in this laboratory is supported by GRF (755206M & 761609M) and NSF/RGC Joint Research Scheme (N_HKU 707107M), HKU Seed Funding for Basic Science Research (200911159082), HKU Alzheimer’s Disease Research Network under Strategic Theme Research for Healthy Aging, and Strategic Theme Research for Drug Discovery.

Lemasters, J.J., 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. J. Rejuvenation Res. 8, 3–5.

